dijkstra-shortest-path-algorithm.py
# https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
from collections import deque, namedtuple
# 1. mark all nodes unvisited
# 2. set initial node distance to zero, other nodes to infinite
# 3. select unvisited node with smallest distance
# 4. find unvisited neighbors (to selected node), compare distances, and save smallest one
# 5. mark current node visited
# 6. stop if destination is visited, otherwise repeat step 3-6
inf = float('inf')
edge = namedtuple('Edge', 'start, end, cost')
# make_edge
def make_edge(start, end, cost=1): return edge(start, end, cost)
class Graph:
def __init__(self, edges):
check_edges = [i for i in edges if len(i) not in [2, 3]]
if check_edges:
raise ValueError('Error: check_edges, {}'.format(check_edges))
self.edges = [make_edge(*edge) for edge in edges]
# vertices
@property
def vertices(self):
return set(
# turn ([1,2], [3,4]) into [1, 2, 3, 4]
sum(([edge.start, edge.end] for edge in self.edges), [])
)
# get_node_pairs
def get_node_pairs(self, node_1, node_2, both_ends=True):
if both_ends:
node_pairs = [[node_1, node_2], [node_2, node_1]]
else:
node_pairs = [[node_1, node_2]]
return node_pairs
# remove_edge
def remove_edge(self, node_1, node_2, both_ends=True):
node_pairs = self.get_node_pairs(node_1, node_2, both_ends)
edges = self.edges[:]
for edge in edges:
if [edge.start, edge.end] in node_pairs:
self.edges.remove(edge)
# add_edge
def add_edge(self, node_1, node_2, cost=1, both_ends=True):
node_pairs = self.get_node_pairs(node_1, node_2, both_ends)
for edge in self.edges:
if [edge.start, edge.end] in node_pairs:
return ValueError('Error: add_edge, {} {}'.format(node_1, node_2))
self.edges.append(edge(start=node_1, end=node_2, cost=cost))
if both_ends:
self.edges.append(edge(start=node_2, end=node_1, cost=cost))
# neighbors
@property
def neighbors(self):
neighbors = { vertex: set() for vertex in self.vertices }
for edge in self.edges:
neighbors[edge.start].add((edge.end, edge.cost))
return neighbors
# dijkstra
def dijkstra(self, source, destination):
assert source in self.vertices, 'assert: source do not exist'
# 1. mark all nodes unvisited
# 2. set initial node distance to zero, other nodes to infinite
distances = { vertex: inf for vertex in self.vertices }
previous_vertices = { vertex: None for vertex in self.vertices }
distances[source] = 0
vertices = self.vertices.copy()
while vertices:
# 3. select unvisited node with smallest distance
current_vertex = min(vertices, key = lambda vertex: distances[vertex])
# 6. stop if destination is visited, otherwise repeat step 3-6
if distances[current_vertex] == inf:
break
# 4. find unvisited neighbors (to selected node), compare distances, and save smallest one
for neighbor, cost in self.neighbors[current_vertex]:
alternative_route = distances[current_vertex] + cost
if (alternative_route < distances[neighbor]):
distances[neighbor] = alternative_route
previous_vertices[neighbor] = current_vertex
# 5. mark current node visited
vertices.remove(current_vertex)
path, current_vertex = deque(), destination
while previous_vertices[current_vertex] is not None:
path.appendleft(current_vertex)
current_vertex = previous_vertices[current_vertex]
if path:
path.appendleft(current_vertex)
return path
# create example graph
graph = Graph([
('a', 'b', 7),
('a', 'c', 9),
('a', 'f', 14),
('b', 'c', 10),
('b', 'd', 15),
('c', 'd', 11),
('c', 'f', 2),
('d', 'e', 6),
('e', 'f', 9)
])
print(graph.dijkstra('a', 'f'))
# deque(['a', 'c', 'f'])